Friday, January 18, 2013

Scientific Reading


Read the article, and try to find evidence of this article being true, one-sided, slanted, or false.  Cite Evidence, and give an example of how it could be written differently.


Dirtying Up Our Diets

  • FACEBOOK
  • TWITTER
  • GOOGLE+
  • E-MAIL
  • SHARE
  • PRINT
  • REPRINTS
OVER 7,000 strong and growing, community farmers’ markets are being heralded as a panacea for what ails our sick nation. The smell of fresh, earthy goodness is the reason environmentalists approve of them, locavores can’t live without them, and the first lady has hitched her vegetable cart crusade to them. As health-giving as those bundles of mouthwatering leafy greens and crates of plump tomatoes are, the greatest social contribution of the farmers’ market may be its role as a delivery vehicle for putting dirt back into the American diet and in the process, reacquainting the human immune system with some “old friends.”
Lauren Nassef
Opinion Twitter Logo.

Connect With Us on Twitter

For Op-Ed, follow@nytopinion and to hear from the editorial page editor, Andrew Rosenthal, follow@andyrNYT.
Increasing evidence suggests that the alarming rise in allergic and autoimmune disorders during the past few decades is at least partly attributable to our lack of exposure to microorganisms that once covered our food and us. As nature’s blanket, the potentially pathogenic and benign microorganisms associated with the dirt that once covered every aspect of our preindustrial day guaranteed a time-honored co-evolutionary process that established “normal” background levels and kept our bodies from overreacting to foreign bodies. This research suggests that reintroducing some of the organisms from the mud and water of our natural world would help avoid an overreaction of an otherwise healthy immune response that results in such chronic diseases as Type 1 diabetes, inflammatory bowel disease, multiple sclerosis and a host of allergic disorders.
In a world of hand sanitizer and wet wipes (not to mention double tall skinny soy vanilla lattes), we can scarcely imagine the preindustrial lifestyle that resulted in the daily intake of trillions of helpful organisms. For nearly all of human history, this began with maternal transmission of beneficial microbes during passage through the birth canal — mother to child. However, the alarming increase in the rate of Caesarean section births means a potential loss of microbiota from one generation to the next. And for most of us in the industrialized world, the microbial cleansing continues throughout life. Nature’s dirt floor has been replaced by tile; our once soiled and sooted bodies and clothes are cleaned almost daily; our muddy water is filtered and treated; our rotting and fermenting food has been chilled; and the cowshed has been neatly tucked out of sight. While these improvements in hygiene and sanitation deserve applause, they have inadvertently given rise to a set of truly human-made diseases.
While comforting to the germ-phobic public, the too-shiny produce and triple-washed and bagged leafy greens in our local grocery aisle are hardly recognized by our immune system as food. The immune system is essentially a sensory mechanism for recognizing microbial challenges from the environment. Just as your tongue and nose are used to sense suitability for consumption, your immune system has receptors for sampling the environment, rigorous mechanisms for dealing with friend or foe, and a memory. Your immune system even has the capacity to learn.
For all of human history, this learning was driven by our near-continuous exposure from birth and throughout life to organisms as diverse as mycobacteria from soil and food; helminth, or worm parasites, from just about everywhere you turned; and daily recognition and challenges from our very own bacteria. Our ability to regulate our allergic and inflammatory responses to these co-evolved companions is further compromised by imbalances in the gut microbiota from overzealous use of antibiotics (especially in early childhood) and modern dietary choices.
The suggestion that we embrace some “old friends” does not immediately imply that we are inviting more food-borne illness — quite the contrary. Setting aside for the moment the fact that we have the safest food supply in human history, the Food and Drug Administration, the Centers for Disease Control and Prevention, and food processing plants and farmers continue to take the blame for the tainted food that makes us ill, while our own all-American sick gut may deserve some blame as well.
While the news media and litigators have our attention focused on farm-to-table food safety and disease surveillance, the biological question of why we got sick is all but ignored. And by asking why an individual’s natural defenses failed, we insert personal responsibility into our national food safety strategy and draw attention to the much larger public health crisis, of which illness from food-borne pathogens is but a symptom of our minimally challenged and thus overreactive immune system.
As humans have evolved, so, too, have our diseases. Autoimmune disease affects an estimated 50 million people at an annual cost of more than $100 billion. And the suffering and monetary costs are sure to grow. Maybe it’s time we talk more about human ecology when we speak of the broader environmental and ecological concerns of the day. The destruction of our inner ecosystem surely deserves more attention as global populations run gut-first into the buzz saw of globalization and its microbial scrubbing diet. But more important, we should seriously consider making evolutionary biology a basic science for medicine, or making its core principles compulsory in secondary education. Currently they are not.
As we move deeper into a “postmodern” era of squeaky-clean food and hand sanitizers at every turn, we should probably hug our local farmers’ markets a little tighter. They may represent our only connection with some “old friends” we cannot afford to ignore.
Jeff D. Leach is a science and archaeology writer and founder of the Human Food Project.

Sunday, December 2, 2012

Thermochemistry: Why should we care?

Read the following article and explain how thermochemistry can help solve the worlds energy crisis?  Do not cite from article use it to explain other ways it could be used.

New Thermoelectric Material Could Be an Energy Saver


MSU doctoral student Xu Lu is part of a team that has developed a new thermoelectric material. Here Lu works in the MSU Center for Revolutionary Materials for Solid State Energy Conversion. (Credit: Photo by G. L. Kohuth)
ScienceDaily (Nov. 27, 2012) — By using common materials found pretty much anywhere there is dirt, a team of Michigan State University researchers has developed a new thermoelectric material.
This is important, they said, because the vast majority of heat that is generated from, for example, a car engine, is lost through the tail pipe. It's the thermoelectric material's job to take that heat and turn it into something useful, like electricity.
The researchers, led by Donald Morelli, a professor of chemical engineering and materials science, developed the material based on natural minerals known as tetrahedrites.
"What we've managed to do is synthesize some compounds that have the same composition as natural minerals," said Morelli, who also directs MSU's Center for Revolutionary Materials for Solid State Energy Conversion. "The mineral family that they mimic is one of the most abundant minerals of this type on Earth -- tetrahedrites.
"By modifying its composition in a very small way, we produced highly efficient thermoelectric materials."
The search to develop new thermoelectric materials has been ongoing. Morelli said that while some new, more efficient materials have been discovered as of late, many of those are not suitable for large-scale applications because they are derived from rare or sometimes toxic elements, or the synthesis procedures are complex and costly.
"Typically you'd mine minerals, purify them into individual elements, and then recombine those elements into new compounds that you anticipate will have good thermoelectric properties," he said. "But that process costs a lot of money and takes a lot of time. Our method bypasses much of that."
The MSU researchers' method involves the use of very common materials, grinding them to a powder, then using pressure and heat to compress into useable sizes.
"It saves tremendously in terms of processing costs," he said.
The researchers expect this discovery could pave the way to many new, low-cost thermoelectric generation opportunities with applications that include waste heat recovery from industrial power plants, conversion of vehicle exhaust gas heat into electricity, and generation of electricity in home-heating furnaces.
The research was published in the online journal Advanced Energy Materials.
The work is supported by a grant from the U.S. Department of Energy/Office of Science. The work is a partnership with the University of Michigan and UCLA. Other institutions involved with the MSU-based center are Northwestern University, the Ohio State University, Wayne State University and Oak Ridge National Laboratory.

Monday, October 8, 2012

Chem Current Event #1


Read the following Article and respond to one of questions below (repeat answers will not receive credit).
In what way is this chemistry related?
What will be accomplished scientifically by breaking this record?

Leap of faith: 5 ways skydiving 120,000 feet can kill you
By Stephanie Pappas
Published October 07, 2012
| LiveScience

On Tuesday (Oct. 9), Austrian skydiver Felix Baumgartner will ascend more than 120,000 feet into the atmosphere inside a capsule attached to a helium balloon. Then, with nothing but a pressurized suit and a parachute, Baumgartner will jump out of the capsule and plummet toward Earth, breaking the sound barrier on the way down.

What could go wrong?

Quite a few things, it turns out — though Baumgartner and his Red Bull-sponsored team say they have considered and prepared for the risks. Here are five of the dangers that Baumgartner faces as he attempts a record-breaking leap.

1. Flat Spin

The problem: In low air pressure, high-altitude skydivers risk going into something called "flat spin." In this position, the body rotates horizontally — imagine a record spinning on a record player. An uncontrolled flat spin could render Baumgartner unconscious, his blood rushing to his extremities, including his head. There, blood could pool in his eyes, causing temporary blindness. Worse, the force of the spin and the rush of blood to the head could cause massive brain bleeding and clotting, which could easily be fatal.

The prevention: 
If Baumgartner's spin gets out of a control, a special elongated parachute will deploy to help stabilize his descent.

2. Boiling Blood

The problem: At the edge of space, from which Baumgartner will make his leap, the air pressure is less than 1 percent of that on Earth's surface. Above 63,000 feet (19,200 meters), the lack of pressure can cause air bubbles to form in the blood, a condition referred to as blood boiling. A bubble large enough to stop the blood from flowing in a major artery could be fatal, and sudden decompression can expand and then collapse the lungs. Depressurization can also cause the body to swell in seconds, as occurred in 1960 when Capt. Joseph W. Kittinger Jr. jumped from 102,800 feet (31,133 m). When Kittinger's glove failed to pressurize properly, his hand swelled to twice its size on descent. [8 Craziest Skydives Ever]

The prevention: Baumgartner's full-pressure suit and helmet are designed to protect the skydiver as he falls. The team has emergency medical protocols in place should Baumgartner arrive on the ground in crisis.

3. Freezing

The problem: The upper atmosphere is a very cold place. The Red Bull Stratos team estimates Baumgartner will step out of his capsule into temperatures of minus 10 degrees Fahrenheit (minus 23 degrees Celsius). As he plummets, he could experience minus 70 degrees F (minus 56 degrees C) or lower. In such cold air, Baumgartner's body would be unable to maintain a core temperature of 98.6 degrees F (37 degrees C) for long. When body temperature drops to 82 degrees F (28 degrees C), unconsciousness can occur. Death is likely when the body dips below 70 degrees F (21 degrees C).

The prevention: Baumgartner's suit should protect him from temperatures as low as minus 90 F (minus 68 C).

4. Shock Waves

The problem: As Baumgartner's body approaches the speed of sound, he'll be playing with some serious forces. Shock-shock interaction occurs when shock waves, also known as sonic booms, in the air collide, in this case the stratosphere that Baumgartner is descending through. Such forces could buffet Baumgartner and possibly endanger him or his pressurized suit. "[Baumgartner will] be colliding with the gas so fast that it can't flow out of his way because it effectively doesn't know that he's coming," physicist Louis Bloomfield of the University of Virginia, told LiveScience's sister site Life's Little Mysteries.

The prevention: According to the Red Bull Stratos team, the thin air is an advantage in this case. Shock waves are less powerful when the air is less dense.

5. Hitting the ground
The problem: Hitting the ground without slowing down enough from a 120,000-foot fall is a very bad idea.

The prevention: Should Baumgartner fall unconscious during his skydive, his emergency parachute will deploy automatically. Unfortunately, he may not be out of the woods in that scenario, as he will be unable to steer his landing or adjust his speed in the final moments of the fall. That could make for a difficult return to Earth.

Copyright 2012 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

http://www.foxnews.comhttp://www.foxnews.com/science/2012/10/07/leap-faith-5-ways-skydiving-120000-feet-can-kill/


Friday, September 7, 2012

Welcome to the 2012-2013 Chem II Blog

List or explain 3 things that make Kelloggsville different (in a positive way) than other schools?
In a perfect world what would you like to see different at KVille (no naming names, or being disrespectful)?


Monday, April 30, 2012

Former Chem II thoughts!

Former Chem II students, you just finished your 1st, or 2nd year of College.  What are your thoughts?  Share them so those closing in quickly on their graduation can hear it 'straight from the horse's mouth'.


Thursday, April 12, 2012

Legacy

What is a legacy?  When you leave these hallowed halls, what do you want your personal legacy to be, and also, how do you want your Class to be remembered?

Please be specific.

Wednesday, February 29, 2012

Chemistry Current Events


  Watch the video posted above, and explain why that reaction could possibly oscillate between colors.
Hint: Use what you learned in Chapter 17.