Sunday, December 2, 2012

Thermochemistry: Why should we care?

Read the following article and explain how thermochemistry can help solve the worlds energy crisis?  Do not cite from article use it to explain other ways it could be used.

New Thermoelectric Material Could Be an Energy Saver


MSU doctoral student Xu Lu is part of a team that has developed a new thermoelectric material. Here Lu works in the MSU Center for Revolutionary Materials for Solid State Energy Conversion. (Credit: Photo by G. L. Kohuth)
ScienceDaily (Nov. 27, 2012) — By using common materials found pretty much anywhere there is dirt, a team of Michigan State University researchers has developed a new thermoelectric material.
This is important, they said, because the vast majority of heat that is generated from, for example, a car engine, is lost through the tail pipe. It's the thermoelectric material's job to take that heat and turn it into something useful, like electricity.
The researchers, led by Donald Morelli, a professor of chemical engineering and materials science, developed the material based on natural minerals known as tetrahedrites.
"What we've managed to do is synthesize some compounds that have the same composition as natural minerals," said Morelli, who also directs MSU's Center for Revolutionary Materials for Solid State Energy Conversion. "The mineral family that they mimic is one of the most abundant minerals of this type on Earth -- tetrahedrites.
"By modifying its composition in a very small way, we produced highly efficient thermoelectric materials."
The search to develop new thermoelectric materials has been ongoing. Morelli said that while some new, more efficient materials have been discovered as of late, many of those are not suitable for large-scale applications because they are derived from rare or sometimes toxic elements, or the synthesis procedures are complex and costly.
"Typically you'd mine minerals, purify them into individual elements, and then recombine those elements into new compounds that you anticipate will have good thermoelectric properties," he said. "But that process costs a lot of money and takes a lot of time. Our method bypasses much of that."
The MSU researchers' method involves the use of very common materials, grinding them to a powder, then using pressure and heat to compress into useable sizes.
"It saves tremendously in terms of processing costs," he said.
The researchers expect this discovery could pave the way to many new, low-cost thermoelectric generation opportunities with applications that include waste heat recovery from industrial power plants, conversion of vehicle exhaust gas heat into electricity, and generation of electricity in home-heating furnaces.
The research was published in the online journal Advanced Energy Materials.
The work is supported by a grant from the U.S. Department of Energy/Office of Science. The work is a partnership with the University of Michigan and UCLA. Other institutions involved with the MSU-based center are Northwestern University, the Ohio State University, Wayne State University and Oak Ridge National Laboratory.

Monday, October 8, 2012

Chem Current Event #1


Read the following Article and respond to one of questions below (repeat answers will not receive credit).
In what way is this chemistry related?
What will be accomplished scientifically by breaking this record?

Leap of faith: 5 ways skydiving 120,000 feet can kill you
By Stephanie Pappas
Published October 07, 2012
| LiveScience

On Tuesday (Oct. 9), Austrian skydiver Felix Baumgartner will ascend more than 120,000 feet into the atmosphere inside a capsule attached to a helium balloon. Then, with nothing but a pressurized suit and a parachute, Baumgartner will jump out of the capsule and plummet toward Earth, breaking the sound barrier on the way down.

What could go wrong?

Quite a few things, it turns out — though Baumgartner and his Red Bull-sponsored team say they have considered and prepared for the risks. Here are five of the dangers that Baumgartner faces as he attempts a record-breaking leap.

1. Flat Spin

The problem: In low air pressure, high-altitude skydivers risk going into something called "flat spin." In this position, the body rotates horizontally — imagine a record spinning on a record player. An uncontrolled flat spin could render Baumgartner unconscious, his blood rushing to his extremities, including his head. There, blood could pool in his eyes, causing temporary blindness. Worse, the force of the spin and the rush of blood to the head could cause massive brain bleeding and clotting, which could easily be fatal.

The prevention: 
If Baumgartner's spin gets out of a control, a special elongated parachute will deploy to help stabilize his descent.

2. Boiling Blood

The problem: At the edge of space, from which Baumgartner will make his leap, the air pressure is less than 1 percent of that on Earth's surface. Above 63,000 feet (19,200 meters), the lack of pressure can cause air bubbles to form in the blood, a condition referred to as blood boiling. A bubble large enough to stop the blood from flowing in a major artery could be fatal, and sudden decompression can expand and then collapse the lungs. Depressurization can also cause the body to swell in seconds, as occurred in 1960 when Capt. Joseph W. Kittinger Jr. jumped from 102,800 feet (31,133 m). When Kittinger's glove failed to pressurize properly, his hand swelled to twice its size on descent. [8 Craziest Skydives Ever]

The prevention: Baumgartner's full-pressure suit and helmet are designed to protect the skydiver as he falls. The team has emergency medical protocols in place should Baumgartner arrive on the ground in crisis.

3. Freezing

The problem: The upper atmosphere is a very cold place. The Red Bull Stratos team estimates Baumgartner will step out of his capsule into temperatures of minus 10 degrees Fahrenheit (minus 23 degrees Celsius). As he plummets, he could experience minus 70 degrees F (minus 56 degrees C) or lower. In such cold air, Baumgartner's body would be unable to maintain a core temperature of 98.6 degrees F (37 degrees C) for long. When body temperature drops to 82 degrees F (28 degrees C), unconsciousness can occur. Death is likely when the body dips below 70 degrees F (21 degrees C).

The prevention: Baumgartner's suit should protect him from temperatures as low as minus 90 F (minus 68 C).

4. Shock Waves

The problem: As Baumgartner's body approaches the speed of sound, he'll be playing with some serious forces. Shock-shock interaction occurs when shock waves, also known as sonic booms, in the air collide, in this case the stratosphere that Baumgartner is descending through. Such forces could buffet Baumgartner and possibly endanger him or his pressurized suit. "[Baumgartner will] be colliding with the gas so fast that it can't flow out of his way because it effectively doesn't know that he's coming," physicist Louis Bloomfield of the University of Virginia, told LiveScience's sister site Life's Little Mysteries.

The prevention: According to the Red Bull Stratos team, the thin air is an advantage in this case. Shock waves are less powerful when the air is less dense.

5. Hitting the ground
The problem: Hitting the ground without slowing down enough from a 120,000-foot fall is a very bad idea.

The prevention: Should Baumgartner fall unconscious during his skydive, his emergency parachute will deploy automatically. Unfortunately, he may not be out of the woods in that scenario, as he will be unable to steer his landing or adjust his speed in the final moments of the fall. That could make for a difficult return to Earth.

Copyright 2012 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

http://www.foxnews.comhttp://www.foxnews.com/science/2012/10/07/leap-faith-5-ways-skydiving-120000-feet-can-kill/


Friday, September 7, 2012

Welcome to the 2012-2013 Chem II Blog

List or explain 3 things that make Kelloggsville different (in a positive way) than other schools?
In a perfect world what would you like to see different at KVille (no naming names, or being disrespectful)?


Monday, April 30, 2012

Former Chem II thoughts!

Former Chem II students, you just finished your 1st, or 2nd year of College.  What are your thoughts?  Share them so those closing in quickly on their graduation can hear it 'straight from the horse's mouth'.


Thursday, April 12, 2012

Legacy

What is a legacy?  When you leave these hallowed halls, what do you want your personal legacy to be, and also, how do you want your Class to be remembered?

Please be specific.

Wednesday, February 29, 2012

Chemistry Current Events


  Watch the video posted above, and explain why that reaction could possibly oscillate between colors.
Hint: Use what you learned in Chapter 17.

Tuesday, January 31, 2012

2nd Semester

Current Chem II students:

What are you excited for this semester (other than graduation)?


Former Chem II students please comment on the following statement :

"You'll never have it easier than you do right now!!"

Monday, January 9, 2012

New Semester

Current Chem II students are entering your final K-ville semester, what do you hope to get out of that last semester?

Former Chem II'ers you have completed your 1st or 3rd college semester what have you learned? About your ability to learn? About Yourself? Any new advice for our soon to be former Chem II'ers.